
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 1

Improving Efficiency by Balancing the Load Using

Enhanced Ant Colony Optimization Algorithm in Cloud

Environment

Ashwini L
1
, Nivedha G

2
, Mrs A.Chitra

3

1, 2Student, Kingston Engineering College

3Assistant Professor, Department of Computer Science and Engineering, Kingston Engineering College

Abstract
 As Cloud Computing is growing rapidly and clients are

demanding more services and better results, load

balancing for the Cloud has become a very interesting

and important research area. Many algorithms were

suggested to provide efficient mechanisms for assigning

the client’s requests to available Cloud nodes. These

approaches aim to enhance the overall performance of

the Cloud and provide the user more satisfying and

efficient services. In this paper, we proposed an

algorithm for load distribution of workloads among

nodes of a cloud by the use of Ant Colony Optimization

(ACO). This is a modified approach of ant colony

optimization that has been applied from the perspective

of cloud or grid network systems with the main aim of

balancing the nodes. This modified algorithm has an

edge over the original approach in which each ant build

their own individual result set and it is later on built into

a complete solution. However, in our approach the ants

continuously update a single result set rather than

updating their own result set. Therefore, the system,

which is incurring a cost for the user should function

smoothly and should have algorithms that can continue

the proper system functioning even at peak usage hours.

Keywords - Ant colony optimization; Cloud computing;

Grid networks; Load balancing.

1. Introduction

1.1 Cloud Computing

”Cloud computing” is a term, which involves

virtualization, distributed computing, networking,

software and web services. A cloud consists of

several elements such as clients, datacenter and

distributed servers. It includes fault tolerance, high

availability, scalability, and flexibility, reduced

overhead for users, reduced cost of ownership, on

demand services [2].

In Cloud computing services can be used from

diverse and widespread resources, rather than

remote servers or local machines. According to the

NIST “Cloud computing is a model for enabling

convenient, on-demand network access to a shared

pool of configurable computing resources (e.g.,

networks, server, storage, application, and services)

that can be rapidly provisioned and released with

minimal management effort or service provider

interaction” [1].

Figure 1: Cloud Computing

1.2 Types of Cloud Computing

 Private cloud – The cloud infrastructure operated

solely for a single organization.

Public cloud – Services are rendered over a

network that is open for public use.

Community cloud- Shares infrastructure between

several organizations from a community.

Hybrid cloud – Composition of two or more clouds

with unique entities.

Distributed cloud – Provided by a set of distributed

machines that are running at different location [1].

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 2

1.3 Service models

 Infrastructure as a Service (IaaS): The capability

provided to the consumer is to provision

processing, storage, networks, and other

fundamental computing resources where the

consumer is able to deploy and run arbitrary

software, which can include operating systems and

applications [2].

Platform as a Service (PaaS): The capability

provided to the consumer is to deploy onto the

cloud infrastructure consumer-created or acquired

applications created using programming languages,

libraries, services, and tools supported by the

provider [2].

Figure 2: Cloud Computing Architecture

Software as a Service (SaaS): The capability

provided to the consumer is to use the provider’s

applications running on a cloud infrastructure2.

The applications are accessible from various client

devices through either a thin client interface, such

as a web browser (e.g., web-based email), or a

program interface.

1.4 Issues in cloud computing

Security, data, Load Balancing, Performance, etc

are the issues in cloud computing [2].

2. Load Balancing

Load balancing is one of the central issues in cloud

computing. The load can be CPU load, memory

capacity, delay or network load. Load balancing is

the process of distributing the load among various

nodes of a distributed system to improve both

resource utilization and job response time while

also avoiding a situation where some of the nodes

are heavily loaded while other nodes are idle or

doing very little work. The load can be balanced

either in hardware or software side.

 Figure 3: Hardware side load balancing.

2.1 Need of Load Balancing in Cloud

Computing

Load balancing in clouds is a mechanism that

distributes the excess dynamic local workload

evenly across all the nodes. It is used to achieve a

high user satisfaction and resource utilization ratio,

making sure that no single node is overwhelmed,

hence improving the overall performance of the

system. Proper load balancing can help in utilizing

the available resources optimally, thereby

minimizing the resource consumption. It also helps

in implementing fail-over, enabling scalability,

avoiding bottlenecks and over-provisioning,

reducing response time etc [2].

2.2 Challenges in Load balancing

Overhead Associated - determines the amount of

overhead involved while implementing a load

balancing algorithm. It is composed of overhead

due to movement of tasks, inter processor and

inter-process communication. This should be

minimized so that a load balancing technique can

work efficiently [3].

Throughput - is used to calculate the no. of tasks

whose execution has been completed.

Performance – is used to check the efficiency of

the system. It has to be improved at a reasonable

cost e.g. reduce response time while keeping

acceptable delays.

Resource Utilization - is used to check the

utilization of resources. It should be optimized for

an efficient load balancing.

Scalability - is the ability of an algorithm to

perform load balancing for a system with any finite

number of nodes. This metric should be improved.

Response Time - is the amount of time taken to

respond by a particular load balancing algorithm in

a distributed system. This parameter should be

minimized.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 3

Fault Tolerance - is the ability of an algorithm to

perform uniform load balancing in spite of

arbitrary node or link failure. The load balancing

should be a good fault-tolerant technique [3].

3. Survey on various load balancing

algorithms

 3.1 Round Robin Algorithm

Round Robin is a very famous load balancing

algorithm, in which the processes are divided

between all processors. The process allocation

order is maintained locally independent of the

allocations from remote processors. In Round

Robin, it send the requests to the node with the

least number of connections, so at any point of time

some node may be heavily loaded and other remain

idle [2], this problem is reduced by CLBDM.

3.2 Central Load Balancing Decision Model

(CLBDM)

CLBDM is a central load balancing decision

model, which is suggested by Radojevic and Mario

Zagar [9], it’s based on session switching at the

application layer. The improvement is that, in the

cloud it calculated the connection time between the

client and the node, and if that connection time

exceeds a threshold then connection will be

terminated and task will be forwarded to another

node using the regular Round Robin rules.

3.3 Map Reduce-based Entity Resolution

Map Reduce is a computing model and an

associated implementation for processing and

generating large datasets. Map task and reduce task

two main task in this model which written by the

user, Map takes an input pair and produces a set of

intermediate value pair and Reduce task accepts an

intermediate key and a set of values for that key

and merges these values to form a smaller set of

value. Map task read entities in parallel and process

them, this will cause the Reduce task to be

overloaded.

3.4 Load Balancing Min-Min Algorithm

(LBMM)

Wang suggested an algorithm called LBMM.

LBMM has a three level load balancing framework.

In first level LBMM architecture is the request

manager which is responsible for receiving the task

and assigning it to service manager, when the

service manager receives the request; it divides it

into subtask and assigns the subtask to a service

node based on node availability, remaining

memory and the transmission rate which is

responsible for execution the task [4].

 Figure 4: Software side load balancing.

3.5 Ant colony optimization (ACO)

Kumar Nishant suggested an algorithm of ant

colony optimization. In ACO algorithm when the

request in initiated the ant start its movement.

Movement of ant is of two ways: Forward

Movement: Forward Movement means the ant in

continuously moving from one overloaded node to

another node and check it is overloaded or under

loaded ,if ant find an over loaded node it will

continuously moving in the forward direction and

check each nodes .Backward Movement: If an ant

find an over loaded node the ant will use the back

ward movement to get to the previous node, in the

algorithm if ant finds the target node then ant will

commit suicide, this algorithm reduced the

unnecessary back ward movement, overcome

heterogeneity, is excellent in fault tolerance.

 Here we are going to concentrate on Ant

Colony Optimization Algorithm for balancing the

load in order to improve the efficiency.

4. Ant Colony Optimization

 ACO is inspired from the ant colonies that work

together in foraging behaviour. In fact the real ants

have inspired many researchers for their work and

the ants approach has been used by many

researchers for problem solving in various areas.

This approach is called on the name of its

inspiration ACO. The ants work together in search

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 4

of new sources of food and simultaneously use the

existing food sources to shift the food back to the

nest. The ethnologists were jeopardized for many

years as they wondered how even a blind ant was

able to follow its fellow ants and exactly reached

the food sources. They found that the ants leave a

pheromone trail upon moving from one node to

another. By following the pheromone trails, the ant

subsequently came to the food sources [4]. The

intensity of the pheromone can vary on various

factors like the quality of food sources, distance of

the food, etc. The ants use these pheromone trails

to select the next node. The ants can even modify

their paths upon encountering any obstacles in their

path. This phenomenon of the ants was used in

many algorithms for optimization where the ants

follow each other through a network of pheromone

paths. The ants upon traversal from one node to

another update the pheromone trail of that path, so

a path becomes more feasible if more ants traverse

upon it. Paths that have the highest pheromone

intensity have the shortest distance between the

point and the best food source. The movements of

these ants independently update a solution set [7].

The Traversal of ants in this system is generally of

two types:

 1) Forward movements-In this type of

movement the ants move for extracting the food, or

searching for the food sources.

 2) Backward movements-In this type of

movements the ants after picking up food from the

food sources traverse back to the nest for storing

their food.

The ACO is a unique algorithm for some of the

reasons like the optimum solution is built not by a

single entity but various entities, which traverse the

length and breadth of the network and then these

individually build upon a solution. Many

researchers to improve upon the results have also

improvised upon the pheromone updating

phenomenon of the ACO. It has been used by the

researchers to improve upon various tasks such as

task scheduling or optimizations in satellite

networks [7].

The limitation of ACO algorithm is every ant build

their own individual result set and it is later on built

into a complete solution.

5. Proposed algorithm

This approach aims at efficient distribution of the

load among the nodes and such that the ants never

encounter a dead end for movements to nodes for

building an optimum solution set. In our algorithm,

first a Regional load balancing node (RLBN) is

chosen in a CCSP, which will act as a head node.

We would be referring to the RLBN as head node

in the rest of the paper. The selection of head node

is not a permanent thing but a new head node can

be elected if the previous node stops functioning

properly due to some inevitable circumstances. The

head node is chosen in such way that it has the

most number of neighbouring nodes, as this can

help our ants to traverse in most possible directions

of the network OF CCSP [7].

 The ants in our proposed algorithm will

continuously originate from the Head node. These

ants traverse the width and length of the network in

such a way that they know about the location of

under loaded or overloaded nodes in the network.

These Ants along with their traversal will be

updating a pheromone table, which will keep a tab

on the resources utilization by each node. We also

proposed the movement of ants in two ways similar

to the classical ACO, which are as follows:

5.1 Forward movement

The ants continuously move in the forward

direction in the cloud encountering overloaded

node or under loaded node.

5.2 Backward movement

If an ant encounters an overloaded node in its

movement when it has previously encountered an

under loaded node then it will go backward to the

under loaded node to check if the node is still under

loaded or not and if it finds it still under loaded

then it will redistribute the work to the under

loaded node. The vice-versa is also feasible and

possible.

The main task of ants in the algorithm is to

redistribute work among the nodes.

However, with continuously originating ants at

some interval, the overload incurred by network

would increase as the number of paths followed by

the ants would increase so would the cost for their

maintenance and thus the network performance

would take a beating. Therefore, we would keep

their numbers in a limit. We can keep their

numbers in a limit by setting a suicide timer on the

ant, which when reaches zero the ant will terminate

itself. The selection of timer value would depend

on the size and number of nodes in the network.

The overload would depend too much on the

interval time, the smaller the overload larger the

overhead and vice-versa. However, higher the

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 5

number of ants more frequent would be the data

changes and load balancing and thus network

efficiency. For this reason, if we could limit the

number of ants in the network for a good trade-off

between the need to keep collecting fresh data and

reduce variance, and the need to avoid congestion

of the ants as well.

6. Pheromone Updation

The ant will use two types of pheromone for its

movement. The type of pheromone being updated

by the ant would signify the type of movements of

the ant and would tell about the kind of node the

ant is searching for. The two types of pheromones

updated by the ants are as follows:

6.1 Foraging Pheromone (FP)

In a typical ACO the ant uses foraging pheromones

to explore new food sources. In our algorithm the

ant would lay down foraging pheromone after

encountering under loaded nodes for searching

overloaded nodes. Therefore, after an ant comes up

to an under loaded node it will try to find the next

path through foraging pheromone.

6.2 Trailing Pheromone (TP)

In a typical ACO the ant uses trailing pheromone to

discover its path back to the nest. However, in our

algorithm the ants would use this to find its path to

the under loaded node after encountering

overloaded node. Therefore, after an ant encounters

an overloaded node it will try to trace back the

under loaded node through the trailing pheromone.

Therefore, the ants use these trails according to the

kind of nodes they encounter. The main aim of the

two types of pheromone updation is to classify the

ants according to the types of nodes they are

currently searching for. The ants after originating

from the head node, by default follow the Foraging

pheromone, and in the process, they update the FP

trails. After coming upon an overloaded node they

follow the Trailing Pheromones and simultaneously

update the TP trails of the path. After reaching an

under loaded node of the same type they update the

data structure so as to move a particular amount of

data from the overloaded node to under loaded

node. Ants then select a random neighbour of this

node, and if they encounter an under loaded node

they start following the FP to trace an overloaded

node, therefore they repeat the same set of tasks

repeatedly in a network to improve the network

performance.

While following on the TP upon encountering an

under loaded node the ants will store information

about the node in list which would include data like

utilization ratio, free space and current tasks which

can be used by the system to configure the best

overloaded nodes suitable whose tasks could be

relocated to these nodes and these will be decided

by the factors like distance between the two nodes

in question and the tasks which have to be

relocated thus influencing the decision of load

balancing. The tasks, which will be relocated, will

be decided according to the already existing tasks

at the under loaded node so that there be no clashes

of interests. After each successful relocation of data

between nodes the ants timer would be checked and

if zero the particular ant would be terminated.

7. Conclusion

This is a modified approach of ant colony

optimization that has been applied from the

perspective of cloud or grid network systems with

the main aim of load balancing of nodes. The main

benefit of this approach lies in its detections of

overloaded and under loaded nodes and thereby

performing operations based on the identified

nodes. This simplistic approach elegantly performs

our task of identification of nodes by the ants and

tracing its path consequently in search of different

types of nodes. We have used the same concepts of

Ant colony optimizations and have only modified

the concepts where forward and trailing

pheromones are used according to our convenience.

In our approach the ants continuously update a

single result set rather than updating their own

result set. In this way, the solution set is gradually

built on and continuously improved upon rather

than being compiled only once in a while. The

other advantage of the approach lies in the fact that

the task of each ant is specialized rather than being

general and the task depends on the type of first

node that was encountered whether it was

overloaded or under loaded. The implementation of

this paper will be done in future work.

References

[1] “NIST Cloud Computing References Architecture”

Special publication 500_292, September 2011.

[2] Sukalyan Goswami and Ajanta De Sarkar, “A

Comparative study of Load Balancing algorithms in

computational Grid environment”, 2013 fifth

International Conference on Computational Intelligence,

Modelling and simulation.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 6

[3] Klaithem Al Nuaimi, Nadar Mohamed, Marium Al

Nuaimi and Jameela Al – Jaroodi, “A Survey of Load

Balancing in Cloud Computing: Challenges and

Algorithms”, 2012 IEEE Second symposium on Network

Computing and Applications.

[4] Huankai Chen, Professor Frank Wang, Dr Na Helian

and Gbola Akanmu, “User-Priority Guided Min-Min

Scheduling Algorithm For Load Balancing in Cloud

Computing”.

 [5] Andrzej Goscinski, Michael Brock, Future

Generation Computer Systems“Towards Dynamic and

Attribute based Publication, Discovery and Selection for

Cloud Computing”, 2010 Elsevier.

[6] M. Dorigo, V. Maniezzo and A. Colorni, Ant System:

Optimization by a Colony of Cooperating Agents, IEEE

Transactions on Systems, Man, and Cybernetics, PP. 29-

41, 1996.

[7] C.W. Chiang, Y.C. Lee, C.N. Lee and T.Y. Chou,

Ant Colony Optimization for Task Matching and

Scheduling, IEEE Proceedings on Computers and Digital

Techniques, 153 (6), pp. 373- 380, 2006.

